
Jotting Documentation
Release 0.2.1

Ryan Morshead

Mar 04, 2018





Contents

1 Install 3

2 Quickstart 5

3 Documentation 9

4 Examples 13

5 API 17

Python Module Index 21

i



ii



Jotting Documentation, Release 0.2.1

jotting is a log system for Python 2 and 3 that can be used to record the causal history of an asynchronous or
distributed system. These histories are composed of actions which, once “started”, will begin “working”, potentially
spawn other actions, and eventually end as a “success” or “failure”. In the end you’re left with a breadcrumb trail of
information that you can use to squash bugs with minimal boilerplate.

Contents 1



Jotting Documentation, Release 0.2.1

2 Contents



CHAPTER 1

Install

Install jotting with pip:

pip install jotting

Then requests and flask to follow along with the examples:

pip install requests flask

1.1 Development

If you’d like to work the source code, then clone the repository from github:

git clone git@github.com:rmorshea/jotting.git && cd jotting

And do an editable install with pip that includes requirements.txt:

pip install -e . -r requirements.txt

3

https://pip.pypa.io/en/stable/quickstart/
http://docs.python-requests.org/en/master/
http://flask.pocoo.org/
https://pip.pypa.io/en/stable/quickstart/


Jotting Documentation, Release 0.2.1

4 Chapter 1. Install



CHAPTER 2

Quickstart

We’ll begin with a function that uses requests to return a response from a url:

import requests

def get_url(url):
r = requests.get(url)
r.raise_for_status()
return r

response = get_url("https://google.com")

To log when get_url is called, we can add book.mark as a decorator:

import requests
from jotting import book

@book.mark
def get_url(url):

r = requests.get(url)
r.raise_for_status()
return r

response = get_url("https://google.com")

Once we’ve done this get_url will immediately begin to get print logs:

|-- started: __main__.get_url
| @ 2018-01-14 17:08:19.223383
| | url: https://google.com
| `-- success: __main__.get_url
| @ 2018-01-14 17:08:20.101563

5

https://realpython.com/blog/python/primer-on-python-decorators/


Jotting Documentation, Release 0.2.1

| | returned: <Response [200]>
| | duration: 0.879 seconds

If we want more than what book.mark gives us we can also use book.write:

import requests
from jotting import book

@book.mark
def get_url(url):

r = requests.get(url)
book.write(debug="checking status...")
r.raise_for_status()
return r

response = get_url("https://google.com")

And now we get an extra log telling us what’s going on inside get_url:

|-- started: __main__.get_url
| @ 2018-01-14 17:08:19.223383
| | url: https://google.com
| |-- working: __main__.get_url
| | @ 2018-01-14 17:08:20.101401
| | | debug: checking status...
| `-- success: __main__.get_url
| @ 2018-01-14 17:08:20.101563
| | returned: <Response [200]>
| | duration: 0.879 seconds

2.1 Putting Things In Context

But wait! We have scripts or functions that have subtasks we’d like to monitor:

import requests

urls = ("https://google.com", "not-here")

responses = []
for u in urls:

r = requests.get(u)
r.raise_for_status()
responses.append(r)

We can use book as a context manager to log anywhere we’d like:

import requests
from jotting import book

urls = ("https://google.com", "not-here")

responses = []
for u in urls:

6 Chapter 2. Quickstart

http://book.pythontips.com/en/latest/context_managers.html


Jotting Documentation, Release 0.2.1

with book("getting %s" % u):
r = requests.get(u)
r.raise_for_status()
responses.append(r)

This will produce just the kind of fine grained logs we need:

|-- started: getting https://google.com
| @ 2018-01-14 17:06:22.016731
| `-- success: getting https://google.com
| @ 2018-01-14 17:06:23.006855
| | duration: 0.990 seconds
|-- started: getting not-here
| @ 2018-01-14 17:06:23.007092
| `-- failure: getting not-here
| @ 2018-01-14 17:06:23.007587
| | MissingSchema: Invalid URL 'not-here': No schema supplied. Perhaps you
→˓meant http://not-here?
| | duration: 0.001 seconds

2.1. Putting Things In Context 7



Jotting Documentation, Release 0.2.1

8 Chapter 2. Quickstart



CHAPTER 3

Documentation

3.1 Outlets

We can configure where jotting sends logs by choosing new “outlets”. Outlets can be any callable object, but we
can also use builtin outlets from jotting.to in order to save logs to a file:

import requests
from jotting import book, to

book.distribute(to.File(path="~/Desktop/logbox.txt"))

# we can format the title with
# the inputs of the function
@book.mark("getting {url}")
def get_url(url):

r = requests.get(url)
r.raise_for_status()
return r

response = get_url("https://google.com")

Now we will find a logbox.txt file on our desktop with the following contents:

{"metadata": {"title": "getting https://google.com", "timestamps": [1519973286.
→˓701371], "tag": "d6154a2a16db4561b151fc43b3781f75", "parent": null, "status":
→˓"started"}, "content": {"url": "https://google.com"}}
{"metadata": {"title": "getting https://google.com", "timestamps": [1519973286.701371,
→˓ 1519973286.991931], "tag": "d6154a2a16db4561b151fc43b3781f75", "parent": null,
→˓"status": "success", "stop": 1519973286.991928}, "content": {"returned": "<Response
→˓[200]>"}}

In all the examples we’ve seen so far, jotting has produced clean nested tree of log statements. However, these
saved logs show us that under the hood jotting isn’t magic - each log is a dictionary that contains the information

9



Jotting Documentation, Release 0.2.1

required to reconstruct a history of actions.

3.1.1 Your Own Outlets

You can make your own outlets with the jotting.to.outlet() decorator. The decorator takes in functions and
returns a new jotting.to.Outlet class. It expects functions of the form (log, *args, **kwargs) where
log is a formatted log string generated by a user, and *args, **kwargs were the parameters that construct the
outlet instance. Given this, we can easily recreate the jotting.to.File outlet:

import os
from jotting.to import outlet

@outlet
def File(log, path):

path = os.path.realpath(os.path.expanduser(path))
with open(path, "a+") as f:

f.write(log)

or the jotting.to.Print outlet:

import sys
from jotting.to import outlet

@outlet
def Print(log):

"""Send logs directly to ``sys.stdout``"""
sys.stdout.write(log)
sys.stdout.flush()

3.2 Styling

In the last section we saw how to save logs to files, and we also noticed, that under the hood, each log message was
actually a dictionary of data. Yet we know that jotting can produce human readable readouts. This is possible
by “styling” log statements - reformatting the raw data into a more presentable form. Each jotting.to.Outlet
accepts as its first argument, and style - a callable object which, given raw log data, returns a formatted string. The
default style for outlets is jotting.style.Raw which simply encodes the data as a json blob, but we could also
use jotting.style.Tree to produce nested ascii readouts instead:

import requests
from jotting import book, to, style

tree = style.Tree()
path = "~/Desktop/logbox.txt"
tree_to_file = to.File(tree, path=path)
book.distribute(tree_to_file)

@book.mark("getting {url}")
def get_url(url):

r = requests.get(url)
r.raise_for_status()
return r

10 Chapter 3. Documentation



Jotting Documentation, Release 0.2.1

response = get_url("https://google.com")

Now instead of raw log data, we’ll find an ascii tree in logbox.txt:

|-- started: getting https://google.com
| @ 2018-03-03 16:53:45.380436
| | url: https://google.com
| `-- success: getting https://google.com
| @ 2018-03-03 16:53:45.692461
| | returned: <Response [200]>
| | duration: 0.312 seconds

3.3 Async

In the real world we aren’t working with single threads, processes, or services. Modern systems are asynchronous
and distributed. Following the causes and effects within them quickly becomes impossible. However with jotting,
it’s possible to begin a book using the tag of a parent task that triggered it. In this way logs can be linked across any
context. We can build a very simple Flask app to demonstrate how we might link a book between a client and server:

from flask import Flask, jsonify, request
from jotting import book
import json

# Server
# ------

app = Flask(__name__)

@app.route("/api/task", methods=["PUT"])
def task():

data = json.loads(request.data)
# link the tag of a parent book
with book('api', data["parent"]):

book.conclude(status=200)
return jsonify({"status": 200})

# Client
# ------

with book('put') as b:
route = '/api/task'
# hand off the tag of the current book
data = json.dumps({'parent': b.tag})
app.test_client().put(route, data=data)

|-- started: get
| @ 2018-02-25 18:22:45.912632
| |-- started: api
| | @ 2018-02-25 18:22:45.922958
| | `-- success: api
| | @ 2018-02-25 18:22:45.923105

3.3. Async 11

https://github.com/rmorshea/jotting/blob/master/examples/threads.py
https://github.com/rmorshea/jotting/blob/master/examples/processes.py
https://github.com/rmorshea/jotting/blob/master/examples/services.py


Jotting Documentation, Release 0.2.1

| | | status: 200
| | | duration: 0.000 seconds
| `-- success: get
| @ 2018-02-25 18:22:45.928721
| | duration: 0.016 seconds

12 Chapter 3. Documentation



CHAPTER 4

Examples

Listing 4.1: The book.mark as a decorator

import requests
from jotting import book

@book.mark
def get_url(url):

r = requests.get(url)
book.write(debug="checking status...")
r.raise_for_status()
return r

response = get_url("https://google.com")

Listing 4.2: Using book as a context manager

import requests
from jotting import book

urls = ("https://google.com", "not-here")

responses = []
for u in urls:

with book("getting %s" % u):
r = requests.get(u)
r.raise_for_status()
responses.append(r)

Listing 4.3: Changing where you jot down your logs

import requests
from jotting import book, to, style

13

https://realpython.com/blog/python/primer-on-python-decorators/
http://book.pythontips.com/en/latest/context_managers.html


Jotting Documentation, Release 0.2.1

to_print = to.Print(style.Log())
to_file = to.File(path="~/Desktop/logbox.txt")
book.distribute(to_print, to_file)

# we can format the title with
# the inputs of the function
@book.mark("getting {url}")
def get_url(url):

r = requests.get(url)
r.raise_for_status()
return r

response = get_url("https://google.com")

Listing 4.4: A toy example showing how to link logs across the web with flask

from flask import Flask, jsonify, request
from jotting import book
import json

# Server
# ------

app = Flask(__name__)

@app.route("/api/task", methods=["PUT"])
def task():

data = json.loads(request.data)
with book('api', data["parent"]):

book.conclude(status=200)
return jsonify({"status": 200})

# Client
# ------

with book('put') as b:
route = '/api/task'
data = json.dumps({'parent': b.tag})
app.test_client().put(route, data=data)

Listing 4.5: Link logs between asynchronous threads

import sys
import time
if sys.version_info < (3, 0):

from Queue import Queue
else:

from queue import Queue
import threading, requests
from jotting import book, to, read

logbox = "~/Desktop/logbox.txt"

14 Chapter 4. Examples

http://flask.pocoo.org/
https://docs.python.org/3/library/threading.html


Jotting Documentation, Release 0.2.1

book.distribute(to.File(path=logbox))

def get(queue, url, parent):
"""Get the URL and queue the response."""
with book("get({url})", parent, url=url):

try:
response = requests.get(url)

except Exception as e:
queue.put(e)

else:
queue.put(response.status_code)

@book.mark
def schedule(function, *args):

"""Create a thread for each mapping of the function to args."""
q = Queue()
for x in args:

# we want to resume the current book
inputs = (q, x, book.current("tag"))
threading.Thread(target=function, args=inputs).start()
book.write(scheduled=x)

return [q.get(timeout=5) for i in range(len(args))]

urls = ["https://google.com", "https://wikipedia.org"]
responses = schedule(get, *urls)

time.sleep(0.1) # give time for logs to flush

read.Complete(logbox)

Listing 4.6: Link logs between asynchronous processes

import sys
import time
import threading, requests
from jotting import book, to, read
from multiprocessing import Process, Queue

logbox = "~/Desktop/logbox.txt"
book.distribute(to.File(path=logbox))

def get(queue, url, parent):
"""Get the URL and queue the response."""
book.distribute(to.File(path=logbox))
with book("get({url})", parent, url=url):

try:
response = requests.get(url)

except Exception as e:
queue.put(e)

else:
queue.put(response.status_code)

@book.mark

15

https://docs.python.org/3/library/multiprocesing.html


Jotting Documentation, Release 0.2.1

def schedule(function, *args):
"""Create a process for each mapping of the function to args."""
q = Queue()
for x in args:

# we want to resume the current book
inputs = (q, x, book.current("tag"))
Process(target=function, args=inputs).start()
book.write(scheduled=x)

return [q.get(timeout=5) for i in range(len(args))]

urls = ["https://google.com", "https://wikipedia.org"]
responses = schedule(get, *urls)

time.sleep(0.1) # give time for logs to flush

read.Complete(logbox)

16 Chapter 4. Examples



CHAPTER 5

API

class jotting.book.book(title, parent=None, **content)
Create a new book for logging.

Parameters

• title (string, function, or class) – A string representing the title of the
book. For functions and classes, a title is infered from its title, and module. Inference
attempt to drill down into closures to determin the root function, or class. This typically
happens when a function or class has many decorators.

• parent (string or None) – The tag of the last book. If None then the last book
within the current thread is used. To link across threads or processes, you must manually
communicate this.

• **content (any) – A dictionary of content that will be logged when the book is opened.

classmethod conclude(*args, **kwargs)
Write the content that will be logged when the book closes.

classmethod current(data=None)
Get the current book, or metadata from the current book.

Parameters data (string or None) – A string indicating a desired piece of metadata from
the current book. If None, then the current book is returned instead.

Returns The current book, or an entry in its metadata.

Return type book

classmethod distribute(*outlets)
Set which jotting.to.Outlet objects recieve logs.

metadata
Get a copy of this book’s metadata.

classmethod outlets()
Get the outlets for all books.

17



Jotting Documentation, Release 0.2.1

status
Get this book’s tag.

Returns ‘started’, ‘working’, ‘success’, or ‘failure’.

Return type string

tag
Get this book’s tag.

classmethod write(*args, **kwargs)
Write a log to the currently open book.

class jotting.to.Outlet(style=<jotting.style.Raw object>, *args, **kwargs)
A base Outlet class.

Subclasses should override the _handler() method.

Parameters

• style (callable) – A function that returns a formated log string. This is usually a
jotting.to.Style object that returns a string.

• *args (any) – Positional arguments passed to Outlet._handler() - a method meant
to be overriden in subclasses. You can use outlet() to turn functions into an Outlets
whose handler is that function.

• **kwargs (any) – Keyword arguments passed to Outlet._handler() - a method
meant to be overriden in subclasses. You can use outlet() to turn functions into an
Outlets whose handler is that function.

jotting.to.outlet(handler)
Turn a function into an Outlet.

This decorator should wrap functions that send logs wherever they need to go.

Parameters handler (callable) – A function of the form (log, *args, **kwargs),
where log is a log generated by a user, and *args, **kwargs are the parameters that
initialize the outlet (e.g. File(path=/path/to/file)).

class jotting.read.Complete(source)
Read a complete set of logs from a file or list of dictionaries.

This class will organize a given set of logs such that they are contextually, but not necessarilly chronologically
ordered. You can get a string representation of the given logs styled as a jotting.style.Tree simply by
converting it to a string (e.g. str(Complete(my_source))), or you can iterate over the reordered logs
(e.g. list(Complete(my_source))) and style them yourself later.

Parameters source (string or iterable containing log strings) – If given as
a string source will be interpreted as a filepath. Otherwise source should it should be a list of
log strings.

class jotting.read.Stream(*outlets)
Read a stream of log strings or dictionaries.

Parameters *outlets (callable) – A series of callable Outlet objects that will receive logs
one at a time. Logs will be collected and then distributed in batches, in order to make guesses
about causes and effects. This only works for logs that were created synchronously.

18 Chapter 5. API



Jotting Documentation, Release 0.2.1

Notes

The stream attempts to make educated guesses about causes and effects. In other words, it will attempt to reorder
the logs. This works well for logs that were synchronously created.

For logs created in parrallel threads or processes, you should store your logs in a file, and read them back with
Complete.

class jotting.style.Log
A basic formater that only creates successes, and failures.

class jotting.style.Raw
Creates a string representation of the log object.

class jotting.style.Style
The base Style type.

class jotting.style.Tree
An ascii tree representation for logs.

19



Jotting Documentation, Release 0.2.1

20 Chapter 5. API



Python Module Index

j
jotting, 17
jotting.book, 17
jotting.read, 18
jotting.style, 19
jotting.to, 18

21



Jotting Documentation, Release 0.2.1

22 Python Module Index



Index

B
book (class in jotting.book), 17

C
Complete (class in jotting.read), 18
conclude() (jotting.book.book class method), 17
current() (jotting.book.book class method), 17

D
distribute() (jotting.book.book class method), 17

J
jotting (module), 17
jotting.book (module), 17
jotting.read (module), 18
jotting.style (module), 19
jotting.to (module), 18

L
Log (class in jotting.style), 19

M
metadata (jotting.book.book attribute), 17

O
Outlet (class in jotting.to), 18
outlet() (in module jotting.to), 18
outlets() (jotting.book.book class method), 17

R
Raw (class in jotting.style), 19

S
status (jotting.book.book attribute), 17
Stream (class in jotting.read), 18
Style (class in jotting.style), 19

T
tag (jotting.book.book attribute), 18

Tree (class in jotting.style), 19

W
write() (jotting.book.book class method), 18

23


	Install
	Quickstart
	Documentation
	Examples
	API
	Python Module Index

