

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Jotting

Logs that explain when, where, and why things happen.

Jotting was heavily inspired by eliot [https://eliot.readthedocs.io/].

jotting is a log system for Python 2 and 3 that can be used to record the causal history of an asynchronous or distributed system. These histories are composed of actions which, once "started", will begin "working", potentially spawn other actions, and eventually end as a "success" or "failure". In the end you're left with a breadcrumb trail of information that you can use to squash bugs with minimal boilerplate.

Quickstart

Install jotting with pip:

$ pip install jotting

Then requests and flask to follow along with the examples:

$ pip install requests flask

Bookmarking

We'll start with a function that uses requests to return a response from a url:

import requests

def get_url(url):
 r = requests.get(url)
 r.raise_for_status()
 return r

response = get_url("https://google.com")

Then we'll start logging what it does by adding a book.mark decorator:

import requests
from jotting import book

@book.mark
def get_url(url):
 r = requests.get(url)
 r.raise_for_status()
 return r

response = get_url("https://google.com")

Once we've done this we'll immediately begin to see printed log statements:

|-- started: __main__.get_url
| @ 2018-01-14 17:08:19.223383
| | url: https://google.com
| `-- success: __main__.get_url
| @ 2018-01-14 17:08:20.101563
| | returned: <Response [200]>
| | duration: 0.879 seconds

But if we need more information than this we can also use book.write:

import requests
from jotting import book

@book.mark
def get_url(url):
 r = requests.get(url)
 book.write(debug="checking status...")
 r.raise_for_status()
 return r

response = get_url("https://google.com")

And now we get an extra log telling us what's going on inside get_url:

|-- started: __main__.get_url
| @ 2018-01-14 17:08:19.223383
| | url: https://google.com
| |-- working: __main__.get_url
| | @ 2018-01-14 17:08:20.101401
| | | debug: checking status...
| `-- success: __main__.get_url
| @ 2018-01-14 17:08:20.101563
| | returned: <Response [200]>
| | duration: 0.879 seconds

Putting Things In Context

But wait! We have scripts or functions that have subtasks we'd like to monitor:

import requests

urls = ("https://google.com", "not-here")

responses = []
for u in urls:
 r = requests.get(u)
 r.raise_for_status()
 responses.append(r)

We can use the book context to define actions that exist independently of functions:

import requests
from jotting import book

urls = ("https://google.com", "not-here")

responses = []
for u in urls:
 with book("getting %s" % u):
 r = requests.get(u)
 r.raise_for_status()
 responses.append(r)

This will produce just the kind of fine grained logs we need:

|-- started: getting https://google.com
| @ 2018-01-14 17:06:22.016731
| `-- success: getting https://google.com
| @ 2018-01-14 17:06:23.006855
| | duration: 0.990 seconds
|-- started: getting not-here
| @ 2018-01-14 17:06:23.007092
| `-- failure: getting not-here
| @ 2018-01-14 17:06:23.007587
| | MissingSchema: Invalid URL 'not-here': No schema supplied. Perhaps you meant http://not-here?
| | duration: 0.001 seconds

Stashing Outputs

Under the hood, jotting creates json encoded messages that contain the information
required to reconstruct a history of actions. If we need to reconfigure where and/or
how jotting logs, we choose new outlets and styles. In a case where we want to
print terse logs to sdtout, but save raw json blobs to a file for later consumption,
we can use a Log styled Print outlet and a Raw styled File outlet respectively.
For the Log style, only the successes and failures of logs where a title has been
given are reported - thus we will title our book.mark with something explanatory:

import requests
from jotting import book, to, style

to_print = to.Print(style.Log())
to_file = to.File(path="~/Desktop/logbox.txt")
book.distribute(to_print, to_file)

we can format the title with
the inputs of the function
@book.mark("getting {url}")
def get_url(url):
 r = requests.get(url)
 r.raise_for_status()
 return r

response = get_url("https://google.com")

Now we will find that we got a print out like this:

2018-02-21 19:46:03.156873 SUCCESS getting https://google.com after 0.315 seconds - returned: <Response [200]>

Along with a logbox.txt file on our desktop with the following contents:

{"metadata": {"tag": "ca5d60ee174111e8b6348c8590280283-0", "depth": 0, "start": 1519243197.023079, "status": "started", "parent": null, "title": "getting https://google.com"}, "content": {"url": "https://google.com"}, "timestamp": 1519243197.023083}
{"metadata": {"tag": "ca5d60ee174111e8b6348c8590280283-0", "depth": 0, "start": 1519243197.023079, "status": "success", "parent": null, "title": "getting https://google.com", "stop": 1519243197.5876129}, "content": {"returned": "<Response [200]>"}, "timestamp": 1519243197.587616}

Distributed Systems

We've covered a lot of use cases, but we can go even further. In the real world
we aren't working with single threads [https://github.com/rmorshea/jotting/blob/master/examples/threads.py], processes [https://github.com/rmorshea/jotting/blob/master/examples/processes.py], or services [https://github.com/rmorshea/jotting/blob/master/examples/services.py]. Modern systems
are asynchronous and distributed. Following the causes and effects within these
systems quickly becomes impossible. However with jotting, it's possible to
begin a book using the tag of a parent task that triggered it. In this way
logs can be linked across any context. We can build a very simple Flask app
to demonstrate how we might link a book between a client and server:

from flask import Flask, jsonify, request
from jotting import book
import json

Server

app = Flask(__name__)

@app.route("/api/task", methods=["PUT"])
def task():
 data = json.loads(request.data)
 with book('api', data["parent"]):
 book.close(status=200)
 return jsonify({"status": 200})

Client

with book('put') as b:
 route = '/api/task'
 data = json.dumps({'parent': b.tag})
 app.test_client().put(route, data=data)

|-- started: get
| @ 2018-02-25 18:22:45.912632
| |-- started: api
| | @ 2018-02-25 18:22:45.922958
| | `-- success: api
| | @ 2018-02-25 18:22:45.923105
| | | status: 200
| | | duration: 0.000 seconds
| `-- success: get
| @ 2018-02-25 18:22:45.928721
| | duration: 0.016 seconds

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

